D.M.H.

D.S.K.

L.E.L.

M.R.B.

S.V.R.

B.J.R.

H.G.

J.M.

BARKER COLLEGE

FORM VI

MATHEMATICS

2/3 UNIT

AM WEDNESDAY 17 AUGUST TRIAL H.S.C. 1988.

TIME; 3 HOURS

200 copies

INSTRUCTIONS:

- * ALL questions may be attempted, and are of equal value.
- * ALL necessary working should be shown in every question. Marks may not be awarded for careless or badly arranged work.
- * Standard integrals are printed on the last page which may be removed.
- * Silent, non-programmable calculators may be used.
- * Each question attempted is to be returned in a separate booklet clearly marked Question 1, Question 2, etc. on the cover. Each booklet must show your Candidate's Number.
- * If you do not attempt a question, you must still hand in a booklet for that question, with NOT ATTEMPTED written clearly on the front.

* * * * * * * * *

QUESTION 1: (use a separate book)

- (i) Express 493.461
 - a) in scientific notation
 - b) correct to the nearest tenth
- (ii) Simplify 2(2x 5) (4 x)
- (iii) Solve for x:

a)
$$\frac{x-1}{3} = \frac{2x+5}{2}$$

- b) 5 3x < 8
- (iv) If $s = ut + \frac{1}{2}at^2$, find s if u = 15.2, t = 3, and a = 9.8
- (v) Find the value of θ in the diagram (correct to the nearest degree).

QUESTION 2: (use a separate book)

- (i) Solve |3x 5| = 7
- (ii) Find the product of 4×10^{-3} and 3.2×10^{5} , expressing your answer in scientific notation
- (iii) Rationalise the denominator: $\frac{1}{2-\sqrt{3}}$
 - (iv) Factorise fully: $5m^3 + 40$
 - (v) Find the value of p in the diagram, correct to 2 decimal places

(vi) Solve 3^x = 11, correct to 3 decimal places.

QUESTION 3: (use a separate book)

- (i) Find the domain of the function $F(x) = \sqrt{x-5}$
- (ii) The numbers x + 3, 6x, 18 are in geometric progression. Find the value(s) of x.
- (iii) Differentiate the following expressions with respect to x:
 - a) $x^3 3x$
 - b) $\frac{2}{\sqrt{x}}$
 - c) $\cos (3x 2)$
 - d) $\frac{\log_e x}{x}$

QUESTION 4: (use a separate book)

- (i) Factorise fully: $x^3 x^2 x + 1$
- (ii) Find primitives of the following functions (with respect to x)
 - a) $sec^2 3x$
 - b) $\sqrt{3x 5}$
- (iii) The third and seventh term of an arithmetic progression are 15 and 59 respectively. Find:
 - a) the first term and common difference
 - b) the sum of the first 18 terms
- (iv) Comment on the validity of the following statement:
 "The first term of a geometric progression is 5 and its sum to infinity is 2".

QUESTION 5: (use a separate book)

(i) Write down possible equations for the following curves:

b) <u>1</u>

- (ii) Evaluate $\lim_{x \to 3} \left(\frac{x^2 2x 3}{x 3} \right)$
- (iii) In the diagram PQR is a straight line,

PA = PQ, RB = RQ and $AP \mid BR$

a) Reproduce the diagram in your answer book, showing on it the features mentioned above.

- b) Prove (giving reasons) that $A\hat{Q}B = 90^{\circ}$
- (iv) ABCD is a quadrilateral whose diagonals bisect each other. Use congruent triangles to prove that AB | DC

QUESTION 6: (use a separate book)

- (i) Find the equation of the normal to the curve $y = \sqrt{x}$ at the point where x = 4 (give your answer in general form).
- (ii) Consider the expression $p(x) = 2x^2 + 2x + k + 3$
 - a) For what values of k does this expression have real roots?
 - b) For what value(s) of k is the sum of the roots twice the product of the roots?
- (iii) Find the centre and radius of the circle $x^2 + 4x + y^2 2y = 11$
- (iv) If $\cos x = \tan x$, find the values of $\sin x$

QUESTION 7: (use a separate book)

- (i) For the parabola $(y-2)^2 = 2x + 6$ find:
 - a) the vertex
 - b) the focal length
 - c) the equation of the directrix
- (ii) The gradient function of a curve is given by $y' = 3x^2 4$. If the curve passes through the point (-1,5), find the equation of the curve.
- (iii) Find the equation of the locus of all points equidistant from the points (-2,1) and (2,3).

(iv)

The diagram shows a sector of a circle, centre 0, whose radius is 8 cm. If the area of the triangle AOB is 25 cm^2 , and \hat{AOB} is acute, find:

- a) the size of AOB (in radians, correct to two decimal places)
- b) the length of the arc ADB, correct to the nearest millimetre.

QUESTION 8: (use a separate book)

- (i) Find the EXACT value of $\int_{3}^{4} \frac{x}{x^2 8} dx$ in its simplest form
- (ii) a) Find the co-ordinates of the points of intersection of the two curves $y = 4x x^2 3$ and $y = x^2 2x + 1$
 - b) Calculate the area contained by the two curves between the points of intersection.
- (iii) Frank decides he wants to retire in 25 years time and collect superannuation totalling \$500 000. He decides to invest a set sum of money in a fund which offers an interest rate of 14% per annum (compounded quarterly). If he makes his first payment now, and his last payment 3 months before he retires, what sum of money will he have to invest each quarter to realise his ambition (give your answer to the nearest dollar)?

QUESTION 9: (use a separate book)

- (i) a) Expand and simplify $(x + \frac{1}{x})^2$
 - b) The area between the curve $y = x + \frac{1}{x}$, the x-axis and the ordinates x = 1 and x = 3 is rotated about the x-axis. Find the exact volume of the solid formed.
 - c) What is the size of the error if this volume is calculated using the trapezoidal rule with 3 ordinate values (give your answer as a fraction of π)?
- ii) A 4 metre piece of wire is cut into 3 pieces, which are bent to form a square and two congruent circles.
 - a) If the radius of each circle is r metres, show that the total area (A square metres) of the 3 figures is given by

$$A = 2\pi r^2 + (1 - \pi r)^2$$

b) Find the value of r and the length of the side of the square which will make this total area a minimum (give your answers in EXACT form).

QUESTION 10: (use a separate book)

- (i) a) Sketch the curve $y = 3 \sin 2x$, $0 \le x \le 2\pi$
 - b) Solve the equation $\sin 2x = \frac{1}{3}$, $0 \le x \le 2\pi$, given that the smallest solution in this domain is 0.17 (give all answers correct to two decimal places) {HINT: use your sketch in part (a)}
 - (ii) a) Find the stationary point(s) for the curve y = xe^X and determine its (their) nature.
 - b) Sketch the curve y = xe^x, showing stationary point (s), intercepts and asymptotes (there is no need to find points of inflexion)
 - c) Hence or otherwise find the value(s) of k for which the equation $xe^{x} = k$ has
 - α) 2 solutions
 - β) 1 solution

END OF PAPER

(1) A) 4.93461 x 102 b) 493.5

> (4-x) = 4x - 10 - 4 + x= 52 -14

 $m_{a} = \frac{2x+5}{3}$

b) 5-3x 48 - 3 L 3x

6x+15 = 2x-2 ~ - - 댶

-3 Lx w x > -1

10) S = (15.2)(3) + 1 (9.8) (3)2

= 89.7

tan 0 = 21

0 = 26°

2 1 13x-51=7

3x-5 = 7

3x -- 2 3x = 12

x = ~~~ 2=4

19 4x 10-3 x 3.2 x 105 = 12.8 x 10

= 1.28 × 103

1 2+13 2-12 2+13 = 2+43

22+13

4) 5m3+40 +5(m3+23)

=5(n+2)(n2-2m+4)

v) p = 35 +21 - 2 x 21 x 38 cos 68 P = 35-88

v) 32 = 11

69311=2 - 20910"

- 2-183 log 103

3 1 x-5 >0 , x >5

1) 62 - 62 - 3

:. 6x2 = 3x + 9

2x1-3x+2x-3=0

x(2x-3)+1(2x-3) =0

عيا - لام

(x+1)(Zx-3)=0

" ay = 23 - 3x

y' = 3x2-3

b) y = 2x -1/2

y' = -x-3/2

- -

e) y = cos (3x-2)

y' = -3 si- (3x-2)

(1) $x^3 - x^2 - x + 1 = x^2(x-1) - 1(x-1)$ ェ (ス^てーり(スー1)

- (x+1) (x-1)(x-1)

11 01 Sec2 3x dx = 1 tan 3x + 4

4) $\int (3x-5)^{\frac{1}{2}} dx = \frac{(3x-5)^{\frac{1}{2}}}{\frac{1}{2}x^{\frac{3}{2}}} + c$ $= \frac{2\sqrt{3x-5}}{3} + c$

11)du3=15 } = a+2d=15 } => 4d=44

iden ,a=-7

b) 5 = = = \$ {2x-7 + 17x11} = 9x173 = 1557

w a = 5 , a = 2

: 5 = 2 - 5 = 2-20

-e-11 ie 15/71

but So cont exist if 1171

intere is no such sequence .

b) y= 14-22

11 $\lim_{x\to 3} \frac{x^2-2x-3}{x-3}$ = ilin (x-3)(x+1) x+3 x-3

= (im (2+1)

= 4 .

6) Label z=BOR, y=POA

as shown.

Then BRQ = 180-2x (Lsum of

and APa = 160 - 23 (. SAPa

These are count on BRNAP :. 150 -2x +150 -2y = 150

:. AB = 90 (str. 4)

let the diagonals intersect at X.

h a's AGK CDX

BK = DX (AC bacets BD)

AX = CX (BD bacets AC)

AXB = CXD (vert. opp)

.. DABX = DCDX (SAS)

.. ABK = CDX (corr. L's of E D's)

:. AB HDC (alt. L's equal)

O14- x1/2

140)

y'=== x = 21x oten x=4

wen x=4 y=2

y'= ‡ :. m = -4

.. pount 10 (4,2)

y-2 =-4(2-4) . equation is

4x+y-8 =0

" A = 4 - 4x2x(4+3)

=4-8(k+3)

8(4+3) =4

K+3 4 &

k6-22

りょりューラーー 4B = K+3

4+B = 24B

-1- 4.3

k = -4

(x+2)²+4x+ $y^{2}-2y=11$ $x^{2}+4x+4+y^{2}-2y+1=16$ $(x+2)^{2}+(y-1)^{2}=4^{2}$

radus-4 : cente = (-2,1)

W) COEX - SINT COEX

costx = sinx I-Sm⁷x = smx

SINTX LSINX - 1-0

SILX = - 1 + 11-4x1x-1

= -1=15

```
(page 2)
        VI 24 TRIAL 1944, Solutions
                                                              (2) (x + \frac{1}{2})^2 = x^2 + 2 \cdot x \cdot \frac{1}{2} + (\frac{1}{2})^2
      (3)(4-2)2 = 2(x+3)
          (y-2)2 = 4x = (x+3)
                                                              1) V = T ( (x + 1/2) da
          a) v (-3,2)
                         P) 7
        ") y'= 3x2-4
                                                                    = R ( x + x + 2 dx
            y = 23-42+C
            5 = (1)3-4(-1)+6
                                                                          [ = +2x]3
            5 -- 1+4+6
                    :. y = x3 - 4x +2
                                                                    = [ (9-13+6)-(3-1+2)]
        14) (x+2)2+ (y-1)2 = (x-2)2+ (y-3)2
           x2+4x+4 +y2-2y+1 = x2-4x+4 + y2-6y+9
                                                               8x + 4y - 8 = 0
                 2x - y - 2 = 0
                                                                              WA (も) sm 日 = 25
                   \sin \Theta = \frac{25}{32}
                                                                   ..V ÷ 13월 ×
                       0 = 090
                                                                 :. error is (29 - 13) T = 17 x
     . b) l = r0
               * 8 x 0-40
                                                                                                 l = length of side
               = 7.2 cm
                            (rearest mm)
                                                                    C = 2xc
                                                                  2x+ 2x+ + 4 = 4
                           = 4 [en(2-8)]
                                                                            4 (Rr +- () = 4
                                                                                   ... <= 1-xr
                           :. Area = Tr2+Tr2+ (1-Tr)2
                            = = e = 8
                                                                    12 A = 2 TT + (1-TT)2
                            = { lu 23
                                                                    A' = 4xr + 2 (1-xr)(-x)
                            = 3 lu2
= 4xr - 2x (1-xr)
           ") a) y= 4x - x2-3 }
                                                                                      4mcr = 2m(1-mr)
                                                                        معاس 0 =
                  y = x2-2x+1 }
                                                                                       2r = (1-xr)
               4x-2-3 = 2-2x+1
                                                                                      r(x+2) = 1
                        0 = 2x^2 - 6x + 4
                                                                    4" = 4x + 2x2 >0
                  x2-3x+2=0
                                                                                     ques a minimum area
                   (x-2)(z-1)=0
                                                                       i. 1= ++2
                          K=1 012
                                                                          e= 1- Kr = 1 - T
            : pts of intersection are (1,0) and (2,1)
                                                               @ ·
                                                                                                 4 SIM 2x= =
         6)
                                A = ( 4x-x2-3-(x2-2x+1) dx
                                                                                                    : sowe graphically
                         y = 4x - 2 - 3 = 6x - 2x^2 - 4 dx
                                                                                                  0.17 , E-0.13, K+0.1
                                   = \left[3x^2 - \frac{2x^3}{3} - 4x\right]^2
                                                                                                  ٠٠٠٩ يو ده
                                                                                               ie 0-1, 1.40, 3-31, 4.54
                                   = (12 - 16 - 8) - (3 - 3 - 4)
                                   = 4-53-1+=
                                                               n) y=xex
                                                                                    test: x -2
                                                                  y' = xe + ex
                                                                                         3'
                                                                     - e*(x+1)
        (ii) let M be the amount of each investment:

151 becomes: M(1+\frac{114}{400})^{100} = M(1.035)^{100}

2nd " M(1+\frac{114}{400})^{11} = M(1.035)^{11}
                                                                     .. Eit) a a min top.
                                                                wen x zo y zo
                                                                is once passes through origin
            iooth_
                          m (1+140)
                                                                                      :. x aus is asymptote on left
                                          = m(1.035)
                                                                            y----
                                                                                        e) by considering points of intersection with yelf,
          .. Total u m(1.035)+ m(1.035)2+ ...+ m(1.035)100
                                                                                                         yek,
               which is a GP
                                a = M(1.035)
                                                                                          we can see that
                                r= 1.035
                                                                                                xex=k has
                                0 = 100
            ". Total is m(1.035) (1.035 100 ) = 500,000
                                                                                        al 250 4 - 1 Lk 10
                                                                                        6) 150 P K >0 or K==
```

:.m = 500000 x 0.035 = \$560